
Design Patterns: A Java
Programmer's Perspective

Ra y Grim m ond
Ch ristie W h itesid es
Threshold Computer Systems, Inc.
ray@thresholdobjects.com

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Agenda
Introduction to Patterns & Design
Patterns
Importance of Patterns
Case Study - Consists of 6 individual
patterns combined in single solution
Patterns are Everywhere

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

History of Patterns
Where do they come from?

Christopher Alexander is a building
architect and author of the following
architecture books. The first book,
Timeless Way, took 14 years to
complete and was published in 1979.

The Timeless Way of Building
A Pattern Language
Nature of Order - latest work, to be
published soon

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

What does it all mean?

"Each pattern describes a problem that occurs
over and over again in our environment and
then describes the core of the solution to that
problem in such a way that you can use this
solution a million times over without ever doing
it the same way twice."

 Christopher Alexander

Christopher Alexander's World
of Patterns

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Christopher Alexander's World
of Patterns (Continued)

More definitions
Each pattern is a 3 part rule, which
expresses a relation between a certain
context, a problem, and a solution.
Each pattern is at the same time, a thing
which happens in the world, and the rule
which tells us how to create that thing,
and WHEN we must create it.
It is both a PROCESS and a THING.

Christopher Alexander, Timeless Way of Building,
p 247.

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

How Did We Go from Buildings
to Software?

Erich Gamma’s Ph.D thesis
OOPSLA ‘91
Knuth - Art of Computer Programming
Coplien - Advanced C++: Programming
Styles & Idioms
Design Patterns - GofF (Gamma, Helm,
Johnson, Vlissides)
PLoP I , 2 , 3, 4 , EuroPlop and Chiliplop
Conferences
Countless Books on Patterns

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Pattern Form
Pattern can be expressed or written in a
variety of different forms. Several
pattern proponents have come up with
there own literary form.

Alexandrian
Gang of Four
Coplien
Portland

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Alexandrian Form
Name

A short noun or noun phrase (sometimes a verb
phrase)

Context
Alexander's introductory paragraph sets the
context of a pattern.
Problem and solution apply to context.

Problem
The design challenge

Solution
Instructions to solve the problem
Could be accompanied by a sketch

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Gang of Four - Design Patterns
Abstracts a recurring design structure
Design pattern has 4 basic parts

Name
Problem
Solution
Consequences

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Gang of Four - Template
Name

What is it
Intent

Description of pattern and purpose
Motivation

Alexander's - Problem, Context, Solution
Applicablity

Circumstances in which pattern applies
Structure

Graphical representation of pattern
Participants

Classes, objects and their responsibilities

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Gang of Four - Template (Continued)

Collaborations
How participants carry out their responsibilities

Consequences
The results of application, benefits, liabilities

Implementation
Traps, hints , techniques, plus language dependent
issues

Sample code
Sample implementations

Known uses
Examples from existing systems

Related patterns
Discussion of other patterns that relate

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Patterns Are Not ...
Algorithms

Pattern-like
Takes the functional view

Idioms
Pattern-like
Describe language specific techniques

Frameworks
More concrete
Only apply in a particular domain

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Why Are Patterns Important to
Java Programmers?

Capture, communicate and apply design knowledge
Your own or other people's

Build consensus
Patterns are shared by a community
Shared vocabulary
Effective way of communicating with clients, peers, and
customers

Reflecting more and creating rationales
Promotes "thought" rather than "action", working
awarely
Artifacts and processes
Expressions and problem solving

Allow potential for design re-use
Build easily adaptable solutions

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

What Is Important in a Design
Pattern to a Java Programmer

Name and Intent
Identifies the design pattern and tells us
what the pattern does and the design
problem it attempts to solve

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

What Is Important in a Design
Pattern to a Java Programmer

Motivation
This section represents the design
problem and outlines the solution to the
design problem.
It can be viewed as the classical
Alexander statement of problem,
solution, and context. But it also goes
further and discusses the classes and
objects within the pattern and how they
solve the design problem.

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

What Is Important in a Design
Pattern to a Java Programmer

Applicability
Horses for Courses !! - Can the pattern be
applied in your situation, can a modified
pattern work any better ?

Forces
Understand the forces (or trade-offs) to
effectively apply the pattern. If you
understand the forces, then you
understand the problem and the solution.

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

What Is Important in a Design
Pattern to a Java Programmer

Structure
Keep mental picture of the class
diagrams.
Look at the class diagrams with the
concrete example first.
Examine the abstract structure diagram
and look for the relationships between
the participants, common methods,
abstract vs. concrete classes,
aggregation, differences with other
patterns.

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

What Is Important in a Design
Pattern to a Java Programmer

Participants
Look at their names - lots of meaning is
intentionally or unintentionally conveyed.
Avoid making too many inferences from
the names alone.

Roles and Responsibilities
Examine the roles played by each
participant, view them as actors in a
play.. "When can they speak and what
can they say and to whom."

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

What Is Important in a Design
Pattern to a Java Programmer

Relationships between participants
Closely examine the relationships
between participants
A relationship that doesn’t or shouldn’t
exist is just as important as one that
does or should exist.

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

What Is Important in a Design
Pattern to a Java Programmer

Consequences
This is real important section.
It normally examines the trade-offs,
benefits and liabilities associated with
applying the pattern.
Check to see if there are any
unacceptable consequences by using
this pattern.

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

How Do I Get Started with
Design Patterns?

Personal Experience - No Silver Bullet
The following has worked for me - but
hindsight is wonderful.

Getting Started
Remember - Name, Problem, Context,
Solution.
DON'T be overwhelmed by the amount of
information available. Examine 2 or 3
patterns at a time.
Quickly review pattern catalog/names,
look for one that fits.

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Pattern Roadmap
Scan Names and Intent for something
that feels right.
Look for a pattern with a similar
purpose (creational , structural,
behavioral)
Examine redesign cause, and apply the
patterns that help avoid it.
Look at any examples, examine the
structure and the participants

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

A Design Pattern Catalog
Purpose Design Pattern Aspect(s) That Can Vary

 Abstract Factory families of product objects
 Builder how a composite object gets created
Creational Factory Method subclass of object that is instantiated
 Prototype class of object that is instantiated
 Singleton the sole instance of a class

 Adapter interface to an object
 Bridge implementation of an object
 Composite structure and composition of an object
Structural Decorator responsibilities of an object without subclassing
 Facade interface to a subsystem
 Flyweight storage costs of objects
 Proxy how an object is accessed; its location

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

A Design Pattern Catalog
Purpose Design Pattern Aspect(s) That Can Vary

 Chain of Responsibility object that can fulfill a request
 Command when and how a request is fulfilled

Interpreter grammar and interpretation of a language
 Iterator how an aggregate's elements are accessed,
 traversed
 Mediator how and which objects interact with each
 other
Behavioral Memento what private information is stored outside
 an object, and when
 Observer number of objects that depend on another
 object, how the dependent objects stay
 up to date
 State states of an object

Strategy an algorithm
 Template Method steps of an algorithm
 Visitor operations that can be applied to objects(s)
 without changing their class(es)

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Redesign Causes
Creating objects with explicit class names
Hard-coded operations
Hardware and OS dependencies
Code tied to object reps &
implementations
Algorithmic dependencies
Tight coupling
Too many subclasses
Altering someone else's monolithic mess

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Understanding Design
Patterns

Start concrete and go abstract
Get familiar with the pattern Name and
Intent, examine the Motivation section
(problem and context). Focus on the
problem, and the solution to that problem.

Samples and more samples
Review as many samples as you can find for
a given pattern (even those in other
languages). Understand and review the
implementation trade-offs section and what
they mean. Learn by example and
differences.

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Understanding Design
Patterns (Continued)

Check applicability
Once you have an idea of the pattern's
intent and the problems it solves, see if it
is applicable to your context.
Does this solution solve your problem ??

Go abstract
Review the Structure, Participants ,
Collaboration and Consequences
sections of the pattern.

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Understanding Design
Patterns (Continued)

Go back to being Concrete
Take another look at the implementation
trade-offs and examples.
Then try and apply the pattern and write
your code.
Not working out ?? Go back to the
beginning and start again, maybe check
out some new patterns, or try the
roadmap approach.

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

File System API Example
Simple example common in CS101

Write a File system - something we all
understand

Focus on problems
Look at the design problems we wish to
overcome

Focus on solution for that problem

Remember - there are an infinite number of
solutions - applying patterns is discovery

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

File System API Example -
Pattern#1

Design problem
Handle scalable and complex file system
structures
Easy to maintain
Have common properties like size and
name
Need to treat objects uniformly - allows
recursion

Solution - use Composite pattern

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Composite
Intent

Compose objects into tree structures to represent
part-whole hierarchies. Composite lets clients treat
individual objects and compositions of objects
uniformly.

Structure
Component

Operation()
Add(Component)
Remove(Component)
GetChild(int)

Composite

Operation()
Add(Component)
Remove(Component)
GetChild(int)

Client

Leaf

Operation() forall g in children
g.Operation();

Children

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Composite Participants
Component

Decares interface for objects in the composition
Implements default behavior in the interface commom to all
classes
Declares an interface for accessing and managing child
components (optional) Declares an interface for accessing a
component's parent

Leaf
Represents leaf objects; has no children
Defines behavior for primitive objects in the composition

Composite
Defines behavior for components having children
Stores child components
Implements child-related operations in the Component interface

Client
Manipulates objects in the compositon through the Component
interface

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Composite Sample Code
Composite.java
interface Component {
 void operation(); // supply method name
 void add(Component c); // ..
 void remove(Component c); // ..
 Component getChild(int a); // ..
};
class Composite implements Component {
 public Component[] g;
 public void operation() {;} // g.operation
 public void add(Component c) {;}
 public void remove(Component c) {;}
 public Component getChild(int a) { return g[a]; }
};
class Leaf implements Component {
 public void operation() { ; }
 public void add(Component c) {;}
 public void remove(Component c) {;}
 public Component getChild(int a) { return null; }
};
class Client {
 void clientMethod() {
 Component x = new Leaf();
 Component y = new Composite();
 }
}

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Case Study - FileSystem

Composite:Component

Leaf Leaf Composite

DirectoryFileLink

Node

(See FileSys1.java)

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

File System API Example -
Pattern #2

Design problem
Symbolic links, "shortcuts" or aliases

Solution - use Proxy pattern

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Proxy
Intent

Provide a surrogate or placeholder for
another object to control object to control
access to it.

Structure
Subject

Request()
...

Proxy

Request()
...

RealSubject

Request()
...

Client

...
realSubject->Request()
...

realSubject

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Proxy Participants
Proxy

Maintains a reference that lets the proxy access the real
subject.
Provides an interface identical to Subject's
Controls access to the real subject
Remote proxies encoded messages sent to a different
address space
Virtual proxies cache information for postponed access to
real subject.
Protection proxies checks callers access permissions.

Subject
Defines the common interface for RealSubject and Proxy

RealSubject
Defines the real object that the proxy represents

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Proxy Sample Code
Proxy.java
interface Subject {
 void request();
 void request2();
}

class Proxy implements Subject {
 RealSubject realSubject;
 Proxy() {
 realSubject = new RealSubject();
 }
 public void request() { realSubject.request(); }
 public void request2() { realSubject.request2(); }
};

class RealSubject implements Subject {
 public void request() {;}
 public void request2() {;}
};

class Client {
 public static void main(String[] args) {
 Proxy p = new Proxy();
 }
}

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Case Study - FileSystem

Composite:Component
Proxy:Subject

Leaf
Proxy

Leaf
Proxy:Real Subject

Composite
Proxy:RealSubject

DirectoryFileLink

Node

(See FileSys2.java and FileSys2chg.java)

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

File System API Example -
Pattern #3

Design Problem
Adding more and more features causes
code-bloat in base class node

Solution - use Visitor pattern

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Visitor
Intent

Represent an operation to be performed
on the elements of an object structure.
Visitor lets you define a new operation
without changing the classes of the
elements on which it operates.

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Visitor (Continued)

Structure
Visitor

VisitConcreteElementA(ConcreteElementA)
VisitConcreteElementB(ConcreteElementB)

ConcreteVisitor1

VisitConcreteElementA(ConcreteElementA)
VisitConcreteElementB(ConcreteElementB)

ConcreteVisitor2

VisitConcreteElementA(ConcreteElementA)
VisitConcreteElementB(ConcreteElementB)

ObjectStructure Element

Accept(Visitor)

ConcreteElementA

Accept(Visitor v)
OperationA()

ConcreteElementB

Accept(Visitor v)
OperationB()

v->VisitConcreteElementA(this) v->VisitConcreteElementB(this)

Client

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Visitor Participants
Visitor

Declares a Visit operation for each class of ConcreteElement
ConcreteVisitor

Implements each operation declared by Visitor
Element

Defines an Accept operation that takes a visitor as an argument.
ConcreteElement

Implements an Accept operation that takes a visitor as an
argument.

ObjectStructure
Can enumerate its elements.
May provide a high-level interface allowing the visitor to visit
elements.
May either be a composite or a collection such as a list or a set.

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Visitor Sample Code
Visitor.java
abstract class Visitor {
 abstract void VisitConcreteElementA(ConcreteElementA a);
 abstract void VisitConcreteElementB(ConcreteElementB b);
}
class ConcreteVisitor1 extends Visitor {
 void VisitConcreteElementA(ConcreteElementA a) { ; }
 void VisitConcreteElementB(ConcreteElementB b) { ; }
}
class ConcreteVisitor2 extends Visitor {
 void VisitConcreteElementA(ConcreteElementA a) { ; }
 void VisitConcreteElementB(ConcreteElementB b) { ; }
}
class ObjectStructure {
 Element[] e;
 Visitor v = new ConcreteVisitor1();
 int len=e.length;
 ObjectStructure() {
 for(int i=0;i..len; i++)
 e[i].Accept(v);
 }
}
class Element {
 void Accept(Visitor v) { ; }
}
class ConcreteElementA extends Element {
 void Accept(Visitor v) { v.VisitConcreteElementA(this);}
 void OperationA() {;}
}
class ConcreteElementB extends Element {
 void Accept(Visitor v) { v.VisitConcreteElementB(this);}
 void OperationB() {;}
}

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Case Study - FileSystem

Composite:Component
Proxy:Subject
Visitor:Element

Leaf
Proxy

Leaf
Proxy:Real Subject

Composite
Proxy:RealSubject

DirectoryFileLink

Node CatVisitor

NodeVisitor

ConcreteVisitor

Visitor

(See FileSys3.java and FileSys3chg.java)

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

File System API Example -
Pattern #4

Design problem
Security policies

Solution - use Template Method pattern

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Template Method

AbstractClass

TemplateMethod()
PrimitiveOperation1()
PrimitiveOperation2()

ConcreteClass

PrimitiveOperation1()
PrimitiveOperation2()

...
PrimitiveOperation1()
...
PrimitiveOperation2()
...

Intent
Define the skeleton of an algorithm in an operation,
deferring some steps to subclasses. Template Method
lets subclasses redefine certain steps of an algorithm
without changing the algorithm's structure.

Structure

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Template Method Participants
AbstractClass

Defines abstract primitive operations
Implements a template method defining the
skeleton of an algorithm.

The template method calls primitive
operations as well as operations defined in
AbstractClass or other objects.

ConcreteClass
Implements primitive operations

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Template Method Sample Code
TemplateMethod.java
abstract class AbstractClass {
 void templateMethod() {
 primitiveOperation1();
 primitiveOperation2();
 }
 abstract void primitiveOperation1();
 abstract void primitiveOperation2();
}
class ConcreteClass extends AbstractClass {
 void primitiveOperation1() { ; } // implement operation 1
 void primitiveOperation2() { ; } // implement operation 2
}
class Client {
 public static void main(String[] args) {
 AbstractClass x = new ConcreteClass();
 x.templateMethod();
 }
}

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Case Study - FileSystem

Composite:Component
Proxy:Subject
TemplateMethod:AbstractClass
Visitor:Element

Leaf
Proxy
TemplateMethod:ConcreteClass

Leaf
Proxy:Real Subject
TemplateMethod:ConcreteClass

Composite
Proxy:RealSubject
TemplateMethod:ConcreteClass

DirectoryFileLink

Node CatVisitor

NodeVisitor

ConcreteVisitor

Visitor

(See FileSys4.java and FileSys4chg.java)

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

File System API Example -
Pattern #5

Design problem
Multi-level protection

Solution - use Singleton pattern

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Singleton
Intent

Ensure a class only has one instance,
and provide a global point of access to it.

Structure

Singleton

static Instance()
SingletonOperation()
GetSingletonData()

static uniqueInstance
singletonData)

return uniqueInstance

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Singleton Participants
Singleton

Defines an Instance operation that lets
clients access its unique instance.
May be responsible for creating its own
unique instance.

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Singleton Sample Code
Singleton.java
class SingletonData {;}

class Singleton {
 Singleton() {
 }

 static Singleton Instance() {
 if(uniqueInstance == null)
 uniqueInstance = new Singleton();
 return uniqueInstance ;
 }

 SingletonData GetSingletonData() {
 if(singletonData == null)
 singletonData = new SingletonData();
 return singletonData;
 }

 static Singleton uniqueInstance=null;
 static SingletonData singletonData=null;
}

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Case Study - FileSystem

Composite:Component
Proxy:Subject
TemplateMethod:AbstractClass
Visitor:Element

Leaf
Proxy
TemplateMethod:ConcreteClass

Leaf
Proxy:Real Subject
TemplateMethod:ConcreteClass

Composite
Proxy:RealSubject
TemplateMethod:ConcreteClass

DirectoryFileLink

Node CatVisitor

NodeVisitor

ConcreteVisitor

Visitor

Singleton (variant)

User

(See FileSys5.java and FileSys5chg.java)

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

File System API Example -
Pattern #6

Design problem
Associating users and groups

Solution - use Mediator pattern

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Mediator

Mediator

ConcreteMediator ConcreteColleague1 ConcreteColleague2

Colleague

mediator

Intent
Define an object that encapsulates how a set of
objects interact. Mediator promotes loose
coupling by keeping objects from referring to
each other explicitly, and it lets you vary their
interaction independently.

Structure

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Mediator Participants
Mediator

Defines an interface for communicating with
Colleague objects.

ConcreteMediator
Implements cooperative behavior by
coordinating Colleague objects.
Knows and maintains its colleagues.

Colleague classes
Each Colleague class knows its Mediator object.
Each colleague communicates with its mediator
instead of a colleague.

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Mediator Sample Code
Mediator.java
abstract class Mediator {
 abstract void methodA(Colleague c);
}
class ConcreteMediator1 extends Mediator {
 void methodA(Colleague c){;}
}
class ConcreteMediator2 extends Mediator {
 void methodA(Colleague c){;}
}
abstract class Colleague {
 Mediator mediator;
 Colleague(Mediator m) { mediator=m; }
 void changed() { mediator.methodA(this); } // passes self option
}
class ColleagueA extends Colleague {
 ColleagueA(Mediator m) { super(m); }
}
class ColleagueB extends Colleague {
 ColleagueB(Mediator m) { super(m); }
}

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Case Study - FileSystem

Composite:Component
Proxy:Subject
TemplateMethod:AbstractClass
Visitor:Element

Leaf
Proxy
TemplateMethod:ConcreteClass

Leaf
Proxy:Real Subject
TemplateMethod:ConcreteClass

Composite
Proxy:RealSubject
TemplateMethod:ConcreteClass

DirectoryFileLink

Node CatVisitor

NodeVisitor

ConcreteVisitor

Visitor

Mediator.ConcreteColleague
Singleton (variant)

User

ConcreteMediator
Singleton

Mediator.
ConcreteColleage

User Manager Group

(See FileSys6.java and FileSys6chg.java)

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Patterns Are Everywhere
Core Java

Bridge
java.io.Button and java.io.ButtonPeer … .etc.

Decorator
 java.io.FilterStream

Composite
 java.awt.Component , java.awt.Container
java.awt.Component subclasses; java.awt.Button, java.awt.Canvas

Strategy
 java.awt.Container, java.awt.LayoutManager

Abstract Factory & Singleton
 java.awt.Toolkit

Iterator
 java.util.Iterator and java.util.Dictionary

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Patterns Are Everywhere
(Continued)

Swing - has same patterns as awt +
Composite

swing.text.Element, swing.text.View,
swing.text.Document classes

Factory
swing.text.ViewFactory

AbstractFactory
Swing Look and Feel classes

+ many more

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Patterns Are Everywhere
(Continued)

San Francisco project - GofF based
AbstractFactory and Command
Property Container (based on Composite)
Policy - Strategy derivative
Chain of Responsibitity Driven Policy
(CofR derivative)
Generic Interface - (Facade derivative)
Controller - (based on Mediator)
Life Cycle - (based on State)

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Patterns Are Everywhere
(Continued)

San Francisco project - Unique Patterns
Keys and Keyables
Cached Balances
Keyed Attribute Retrieval
Extensible Item
Hierarchy Level Information
Ables and Ings

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

Patterns Are Everywhere
(Continued)

Concurrent Programming - Doug Lea
Part of the Java Series books - ISBN
0-20-169581-2
Excellent book contains examples of
pattern uses in a concurrent
programming context.
Not the easiest of books to read.

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

References
Threshold Computers Systems - Contact Web Site

www.thresholdobjects.com
Threshold Pattern Tools

www.qwan.com
Books

The Timeless Way of Building, Christopher Alexander,
OUP, ISBN 0-19-502402-8
A Pattern Language, Christopher Alexander, OUP, ISBN
0-19-501919-9
The Patterns Handbook, Linda Rising, SIGS, ISBN
0-52-164818-1
Design Patterns, Gamma, Helm, Johnson, Vlissides,
AW, ISBN 0-20-163361-2
Pattern Hatching, Vlissides, AW, ISBN 0-20-143293-5

Colorado Software Summit: November 1 – 6, 1998 © Copyright 1998, Threshold Computer Systems, Inc.

